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Abstract—Markov boundary (MB) has been widely studied in single-target scenarios. Relatively few works focus on the MB

discovery for variable set due to the complex variable relationships, where an MB variable might contain predictive information

about several targets. This paper investigates the multi-target MB discovery, aiming to distinguish the common MB variables

(shared by multiple targets) and the target-specific MB variables (associated with single targets). Considering the multiplicity of

MB, the relation between common MB variables and equivalent information is studied. We find that common MB variables are

determined by equivalent information through different mechanisms, which is relevant to the existence of the target correlation.

Based on the analysis of these mechanisms, we propose a multi-target MB discovery algorithm to identify these two types of

variables, whose variant also achieves superiority and interpretability in feature selection tasks. Extensive experiments

demonstrate the efficacy of these contributions.

Index Terms—Markov boundary (MB), Markov blanket, feature selection, common MB variable, target-specific MB variable

Ç

1 INTRODUCTION

MARKOV boundary (MB) is of fundamental importance in
statistical machine learning, which contains critical

information about a given target. As shown in Fig. 1, in a faith-
ful Bayesian network (BN),MB consists of the parents, children,
and spouses (other parents of the children) of the target [1], [2], [3].
MB variables have the potential ability to imply the underly-
ing mechanism around the target [1], [2], and are widely
applied to real-world tasks. For example, MB discovery is the
first step in BN structure learning, where the skeleton of the
BN without orientation is constructed by MB [4], [5], [6].
Another important application is feature selection [7], [8],
since all other features are independent of the class attribute
conditioned on its MB [7]. Some studies [9], [10], [11], [12]
have proved that theMB set is the theoretically optimal subset
for learning and inference tasks. Due to the practical benefits,
extensive algorithms are proposed to search theMB of a single
target. Some of these algorithms [13], [14], [15], [16], [17], [18],

[19] learn the MB based on Unique MB Assumption1 [1],
which is always violated in real-world data. Other algorithms
[12], [16], [20] relax this assumption to detect multiple MBs of
a target, whereas it is still intractable to find all of the possible
MBs due to the unpredictable number ofMBs.

However, few works consider the MB discovery for a
variable set despite the ubiquity of multi-target data. This
problem occurs when the joint probability distribution of
several targets conditioned on other variables is analyzed,
such as common features discovery of multiple targets,
dimensionality reduction for multi-label learning, etc.
Contrary to single-target scenarios, multi-target scenarios
involve extra relationships between multiple targets, lead-
ing to two types of MB variables. As shown in Fig. 1, some
MB variables simultaneously contain the predictive infor-
mation about several targets, which are called common
MB variables in the following, and correspondingly, others
in the MB set are called target-specific MB variables. Both
of them can facilitate the comprehension of the underlying
mechanism, yet their focuses are different. Intuitively, tar-
get-specific MB variables reflect the differences among the
local relations around different targets, which would assist
the prediction or inference tasks on their corresponding
targets [21]. While the common MB variables represent the
connections between these targets, which are naturally
capable of providing information about multiple targets
with the minimal number of variables. Hence, they have
extensive application prospects in dimension reduction,
such as multi-label feature selection [22]. To drive a biased
model2 where different types of variables can contribute to
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1. A basic assumption of the MB discovery, supposing that each tar-
get has a unique MB set (Refer to Theorem 2 in Section 2 for details).

2. A biased model means that different types of variables in the
model have different effects on it. For example, in a prediction model
for a certain target, target-specific MB variables of this target have a
greater impact on predicting results.
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the model with varying degrees, it is necessary to study the
multi-target MB discovery problem with the following
goals:

� To discover all of the MB variables for a target set;
� To distinguish between common MB variables and

target-specific MB variables.
Due to more complex relationships in multi-target sce-

narios, existing single-target methods cannot be applied to
multi-target scenarios directly. Different from the single-tar-
get scenario, the Unique MB Assumption should be relaxed
in multi-target MB discovery since the multiple MBs lead to
uncertain solutions. For example, in meteorology, the drop-
ping in sea level pressure (F1), the convergence of the winds near
the surface (F2), and the divergence of the winds at the top of the
atmosphere (F3), are spatially adjacent [23], and just any one
of them can be equivalently used to predict the tornado (T1).
And only F1 needs to be used to predict the extreme precipita-
tions (T2). Thus, there exist three equivalent MBs of T1

including F1 or F2 or F3 respectively, making F1 become a
common MB variable of T1 and T2. However, as mentioned
before, it is scarcely possible for existing methods to mine
all MBs due to the low statistical reliability [12], making
some common variables undetected. In the example above,
if we search common MB variables of T1 and T2 through the
intersection of their MBs but only find the MB of T1 includ-
ing F2 or F3, then F1 can not be identified. Besides this,
directly finding all MBs may suffer from high time complex-
ity and low accuracy due to the numerous conditional inde-
pendence tests (CI-tests), especially with large conditioning
sets [18]. Fortunately, the non-unique MBs coexist with
equivalent information3 [12], which are easier and more effi-
cient to detect. Furthermore, due to the target relationships
in multi-target scenarios, dependence between targets
should be examined.

In this article, we discover that common MB variables are
determined by equivalent information following different
mechanisms with or without the existence of target relation-
ships. Explicitly, we prove that if any target does not

contain the predictive information about another target,
then the equivalent information about targets might induce
new common MB variables, while the equivalent informa-
tion about non-target variables does not. For this purpose,
we introduce a Target-relation Assumption to simplify the
discussion, which supposes that a target is not included by
the MB of another target. Based on this assumption, the dis-
cussion is divided into two parts, satisfying and violating
the assumption. We start from the simple case satisfying the
assumption, and provide the general characteristics of com-
mon MB variables. Afterwards, we relax the assumption
and find that some unidentified common MB variables are
influenced by equivalent information about non-target vari-
ables. Based on the theoretical analyses, we subsequently
develop a Common and Target-specific MB variable discov-
ery (CTMB) algorithm to achieve the following benefits:

1) Practicability: CTMB can identify most MB variables
and simultaneously distinguish the two types;

2) Robustness: CTMB is always effective in the case sat-
isfying or violating the Target-relation Assumption
and Unique MB Assumption;

3) Generality: CTMB can be directly extended to facili-
tate some real-world applications.

To demonstrate the generality of CTMB, we apply it to
feature selection and propose a novel CTMB-driven multi-
Label Feature Selection algorithm (CLFS). Through learning
the MBs around multiple labels, CLFS possesses three supe-
riorities over traditional algorithms:

1) Interpretability: CLFS can explain which labels a
selected feature influences.

2) Practicability: Under the premise of ensuring the rel-
atively higher accuracy, CLFS automatically prede-
termines the number of selected features via mining
the underlying mechanism.

3) Theoretical Reliability: We will prove that CLFS
achieves the maximum relevance and minimum
redundancy in Section 4.2.

The remainder of this paper is organized as follows. We
first introduce the related work in Section 2, including the
basic theories and classical MB discovery algorithms. Then,
the theoretical properties of common and target-specific MB
variables are discussed in Section 3, with and without con-
sideration of relationships between targets. Based on these
theories, CTMB is also proposed in Section 3. We extend the
CTMB to solve multi-label feature selection and propose the
CLFS algorithm in Section 4, where the maximum relevance
and minimum redundancy achieved by CLFS are also
proved. In Section 5, we conduct extensive experiments to
validate the proposed algorithms on various synthetic and
real-world data sets. Finally, we conclude this paper and
propose some future directions in Section 6.

2 SYNOPSIS OF THEORIES AND METHODS

MOTIVATING PRESENT WORK

In this section, we introduce some basic definitions and the-
ories motivating the present work. Additionally, some clas-
sical and state-of-the-art methods related to this work are
introduced. In this paper, the ‘target’ is used to denote the
variable being studied when the MB discovery is discussed,

Fig. 1. Examples to illustrate the basic concepts in this paper. (1) MB of a
target (e.g., Common Cold) contains parents (Frigid Weather, Specific
gene sequence of Rhinovirus, and Same gene sequence of the two
viruses), children (Coughing, Fatigue, and Allergy), and spouses (Pollen)
of the target. (2) For multiple targets, common MB variables simulta-
neously influence multiple targets while target-specific MB variables
influence a single target. For example, Coughing is the common MB vari-
able of COVID-19 and Common Cold, while Respiratory Distress is the
target-specific MB variable of COVID-19.

3. A Phenomenon that two variable sets contain equivalent informa-
tion about a target (Refer to Definition 3 in Section 2 for details).
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and the ‘label’ is used to replace the ‘target’ when the fea-
ture selection application is discussed. Common upper-case
letters denote random variables and upper-case bold letters
denote random variable sets. Specifically, VVVVVVV ¼ UUUUUUU [ TTTTTTT repre-
sents the set of all variables, in which UUUUUUU represents the
non-target variable set (or feature set), and TTTTTTT represents the
target set (or label set). When the discussion is about a cer-
tain target, T is used to denote the target. Hollow upper-
case letter G denotes a directed acyclic graph (DAG), and P
denotes the joint probability distribution over VVVVVVV .

2.1 Basic Properties of Probability Distribution

Definition 1. (Conditional Independence) Variable sets X and Y
are conditionally independent given a variable set Z if
PðX;YjZÞ ¼ PðXjZÞPðYjZÞ, denoted as X ? YjZ. Inversely,
X 6? YjZ denotes the conditional dependence relationships.

Some important basic properties of joint probability distri-
bution will be used to prove the theorems in this paper.

Theorem 1. [3], [24] Let variable sets A;B;C;Z � V, six prop-
erties hold in any joint probability distribution P over V:

1) Self-conditioning: A ? ZjZ.
2) Symmetry: A ? BjZ, B ? AjZ.
3) Decomposition: A ? B [ CjZ) A ? BjZ and A ?

CjZ.
4) Weak union: A ? B [ CjZ) A ? BjZ [ C.
5) Contraction: A ? BjZ [ C and A ? CjZ) A ?

B [ CjZ.
6) Intersection: If P is strictly positive, then: A ?

BjZ [ C and A ? CjZ [ B) A ? B [ CjZ.
Using mutual information [25] to measure the condi-

tional independence relationship, we have IðXXXXXXX;YYYYYYY jZZZZZZZÞ ¼ 0 if
XXXXXXX ? YYYYYYY jZZZZZZZ. There are five frequently-used CI-tests methods:
�2 test, G2 test, mutual information for discrete features
[26], Fishers Z tests for continuous features with linear rela-
tions with additive Gaussian errors [27], and kernel-based
tests for continuous features with nonlinearity and non-
Gaussian noise [28]. In this paper, discussion about CI-tests
is based on Assumption 1:

Assumption 1. (Statistical Sufficiency Assumption) [1], [2]
The learner has access to a sufficiently large training set and
reliable statistical tests for determining conditional dependen-
cies and independencies in the original distribution where the
data are sampled from.

Assumption 1 states that the CI-tests adopted in algo-
rithms are correct, which requires that the data set is a suffi-
ciently large independent and identically distributed
sample of the underlying probability distribution. And
Obviously, small-scale samples will influence the correct-
ness of the statistical tests.

2.2 Markov Blanket and Markov Boundary

Definition 2. (Markov Blanket and Markov Boundary) [3] The
Markov blanket Mb of target T is a subset of V satisfying the
condition: 8X 2 V�Mb; X ? T jMb in the joint probability
distribution P. Markov boundary MB of T is the minimum
Markov blanket of T satisfying: 8Z �MB, Z is not a Markov
blanket of T .

In this paper, the Markov boundary is abbreviated as MB.
According to Definition 2, the mutual information IðT; VVVVVVV �
fTgÞ ¼ IðT;MBMBMBMBMBMBMBÞ, and thus, MB set carries all of the predic-
tive information about the corresponding target. MB pro-
vides a complete picture of the local relationship around the
target [18], which could be intuitively understood in BN [3].
An example of MB with DAG is shown in Fig. 1. In a faithful
BN, MB of a variable includes its parents, children, and
spouses [3]. Thus, MB of Common Cold contains its parents
(Frigid Weather, Specific gene sequence of Rhinovirus,
Same gene sequence of the two viruses), children (Cough-
ing, Fatigue, Allergy), and spouses (Pollen). The remaining
variables are independent of Common Cold conditioned on
its MB.

Extensive works further assume that the target has a
unique MB, and propose many effective methods, which
can be broadly classified into two types according to the
review [29], i.e., simultaneous MB learning algorithms and
divide-and-conquer MB learning algorithms. Some early
proposed methods, such as Incremental Association MB
(IAMB) [13] and its variants [13], [30], are simultaneous MB
learning algorithms. These algorithms do not distinguish
between the parent-child variables and spouse variables
and learn them simultaneously. Thus, they are time-efficient
but require the number of samples to be exponential to the
size of the MB, which means that insufficient samples will
result in performance degradation [16]. Divide-and-conquer
MB learning algorithms are proposed to further improve
the MB discovery accuracy with a reasonable time cost,
which first search the parent-child variables and then the
spouse variables of a target. Classical methods include
Max-Min MB (MMMB) [14], HITON-MB [15], and Parents-
and-Children-based MB (PCMB) [16], and the state-of-the-
art ToLerant MB (TLMB) [19], Separation and Recovery
MB (SRMB) [17], and Cross-check and Complement MB
(CCMB) [18]. Most of these algorithms are efficient to seek
an approximate MB set with a reasonable time cost. The
aforementioned algorithms assume that the probability dis-
tribution is strictly positive:

Theorem 2. [31] If the joint probability distribution P satisfies
the Intersection property, then a target has a unique MB.

Under certain assumptions, these algorithms have good
performances and also have been widely applied in feature
selection. However, in real-world applications, the unique
MB assumption is always violated, leading to multiple
equivalent MBs for a target. For example, if a variable is
completely determined by another, then the Intersection
property is violated when taking one of the two as the tar-
get. Some relevant theories and algorithms about multiple
MBs are reviewed next.

2.3 Multiple MBs and Equivalent Information

When the joint probability distribution P does not satisfy
the Intersection property, there exists a phenomenon, called
equivalent information.

Definition 3. (Equivalent information) [12] Variable subsets X
and Y contain equivalent information about target variable T
conditioned on Z if and only if T 6? XjZ, T 6? YjZ, T ?
XjY [ Z, T ? YjX [ Z.
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Fig. 2 provides an example of equivalent information.
According to the probability distribution in the probability
table, PðA; T jBÞ ¼ PðAjBÞPðT jBÞ and PðB; T jAÞ ¼ PðBjAÞ
P ðT jAÞ. Then, we can conclude that A 6? T , B 6? T , A ?
T jB, and B ? T jA. According to Definition 3, A and B con-
tain equivalent information about T . Moreover, it can be
seen from the probability distribution in Fig. 2 that, the MB
set of T could be fAg or fBg, which verifies the coexistence
of the equivalent information phenomenon and multiple
MBs. The phenomenon is formally stated as Theorem 3.

Theorem 3. [12] The intersection property holds if no informa-
tion equivalence occurs.

According to Theorem 3, if there exists equivalent infor-
mation, a target might have multiple MBs. Some algorithms
are proposed to detect multiple MBs. Earlier solutions are
stochastic algorithms, which find multiple MBs through
running a single MB discovery algorithm multiple times ini-
tialized with a random seed. For example, KIAMB [16] is a
stochastic extension of IAMB, which tries to get all MBs by
running IAMB K times. Ensemble gene selection by group-
ing [32], another multiple MB discovery strategy, groups
variables into multiple clusters first and then randomly
samples a representative from each cluster, constituting dif-
ferent MBs. The aforementioned approaches are highly heu-
ristic and can not guarantee the correctness of the output.
Iterative Removal HITON-PC (IR-HITON-PC) [33] applies
Semi-Interleaved HITON-PC to identify an MB set, and
then removes the variables in the discovered MB from the
variable set and repeatedly invokes the MB discovery pro-
cess. IR-HITON-PC is theoretically correct but not practical
to induce multiple MBs in high-dimensional but relatively
small-scale data sets [12]. Target Information Equivalence
algorithm (TIE*) [12] is an algorithmic framework for multi-
ple MB discovery. It uses a single MB discovery algorithm
to find an initial MB first, and then repeats the following
three steps: (1) Remove a subset GGGGGGG of a previously discov-
ered MB MBMBMBMBMBMBMBpre from the full variable set VVVVVVV , and obtain VVVVVVV �
GGGGGGG; (2) Learn a new MB MBMBMBMBMBMBMBnew from the remaining variable
set VVVVVVV �GGGGGGG; (3) Estimate the correctness of MBMBMBMBMBMBMBnew. They are
repeated until all possible MB subsets GGGGGGG are considered.
TIE* dictates to consider removing from VVVVVVV only certain sub-
sets GGGGGGG of the previously found MB, and thus is more effi-
cient than other methods. MB discovery under the Weak
Markov Local Composition assumption (WLCMB) [20] uses

a similar strategy to search multiple MBs. It improves step
(2) in TIE* with a novel single MB discovery algorithm
LCMB to avoid incorrect CI-tests. Although the efficiency
and accuracy of multiple MB discovery algorithms continue
to improve, they are still intractable to find all possible MBs
since the unpredictable number of MBs makes the process
time-consuming.

3 MB DISCOVERY FOR A VARIABLE SET

Compared with the single-target problem, the additional
information introduced to the multi-target problem is the
relationship between targets, which is crucial for the analy-
sis in multi-target scenarios [34]. Due to the target relation-
ships, MB variables in multi-target data include two types,
i.e., aforementioned common MB variables and target-spe-
cific MB variables. In the following, we formally define
these variables in Section 3.1, and discuss their properties
with and without consideration of relationships between
targets in Sections 3.2 and 3.3. Based on the theoretical prop-
erty, a discovery and distinguishing algorithm is proposed
in Section 3.4 with a toy example in Section 3.5.

3.1 Definition and Assumption: Common & Targ
et-Specific MB Variables, and Target-Relation
Assumption

As a concept derived from MB, we formally give straight-
forward definitions of common MB variables and target-
specific MB variables based on the concept of MB.

Definition 4. For a target set T, variable X is a common MB
variable of target set T if 8T 2 T, there exists an MB of T
including X. Variable X is a target-specific MB variable if
there is only one T 2 T whose MB includesX.

The common and target-specific MB variables are
defined for a target set and a single target, respectively.
According to Definition 4, they can be easily distinguished
as long as the MB set of each target is previously known.
For example in Fig. 3, if the intersection property holds and
each target has a unique MB, then the intersection (fA;Bg)
of the MB sets of T1 and T2 is the common MB variables for
fT1; T2g. E is a target-specific MB variable of T1, and F is a
target-specific MB variable of T2. Fig. 4 further presents a
case with multiple MBs, where fA;Bg and fC;Dg contain
equivalent information about T1, and fA;Bg and fG;Hg
contain equivalent information about T2. In this case,
fA;B;Eg and fC;D;Eg are MBs of T1, fA;B; Fg and
fG;H; Fg are MBs of T2

4. Then, we obtain the common MB
variables of fT1; T2g are A and B, and others are target-spe-
cific. The second example indicates that learning all of the

Fig. 2. A simple example of Equivalent information. The response vari-
able is T , and all variables take values f0; 1g. Variables A and B,
highlighted with the same color, contain equivalent information about T .

Fig. 3. An example of common MB variables and target-specific MB
variables without multiple MBs.

4. Note that the case in this assumption is possible under the DAG in
Fig. 4, which can be understood from the probability table in Fig. 2
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multiple MB sets is the premise of distinguishing these two
types of variables. Hence, Definition 4 is still difficult to use
as a criterion for identification. Given the constant predic-
tive information, we now present another definition of com-
mon MB variables from the perspective of information
theory.

Definition 5. Let T denote a target set, MBi denote the MB of
Ti 2 T, and Zi �MBi denote a nonempty subset of MBi. If
there exists Z � U, such that

IðMBi � Zi [ Z; TiÞ ¼ IðMBi; TiÞ; (1)

and any subsets of Z do not satisfy Eq. (1), then all variables in
Z are common MB variables of the target set T.

Intuitively, Eq. (1) in Definition 5 means that the common
MB variables in ZZZZZZZ can be used to replace the MB subset of
each target without any information loss. Thus, ZZZZZZZ carries
the information of all targets in TTTTTTT , while ZZZZZZZi only carries the
information of the target Ti. Moreover, MBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ is an
MB of Ti, and ZZZZZZZ is also an MB subset of Ti. Although ZZZZZZZ and
ZZZZZZZi are both subsets of a certain MB of Ti, ZZZZZZZi does not have to
be different from ZZZZZZZ, which depends on whether they are
from the same MB. For example, in Fig. 3, MBMBMBMBMBMBMB1 ¼ fA;B;Eg,
MBMBMBMBMBMBMB2 ¼ fA;B; Fg, then ZZZZZZZ1 ¼ ZZZZZZZ2 ¼ ZZZZZZZ ¼ fAg, or ZZZZZZZ1 ¼ ZZZZZZZ2 ¼
ZZZZZZZ ¼ fBg. While in Fig. 4, assume that the MBs of T1 and T2

have been known as MBMBMBMBMBMBMB1 ¼ fC;D;Eg and MBMBMBMBMBMBMB2 ¼
fF;G;Hg. Then, taking ZZZZZZZ1 ¼ fC;Dg, ZZZZZZZ2 ¼ fG;Hg, we can
obtain that ZZZZZZZ ¼ fA;Bg is the solution of Eq. (1), which indi-
cates that A and B are common MB variables of fT1; T2g.
Additionally, some supersets of ZZZZZZZ (e.g., fA;B;E;Hg in
Fig. 4) also meet the requirement in Eq. (1), thus Definition 5
further restrains that any subset of ZZZZZZZ does not satisfy Eq. (1).

The main difference between Definitions 4 and 5 is that,
Definition 4 introduces the literal meaning of the common
MB variable, i.e., 8T 2 TTTTTTT , there exists an MB set of T includ-
ing X. According to Definition 4, we need to obtain all MBs
of each target (including multiple MBs) to find common MB
variables. Inversely, Definition 5 only requires one MB pre-
viously known of each target, and Eq. (1) retrieves other
MBs by replacing ZZZZZZZi with ZZZZZZZ. In the following, we theoreti-
cally prove the equivalence of these two definitions.

Theorem 4. Definitions 4 and 5 are equivalent.

Proof. Definition 4 ) Definition 5: Assume X is a variable
satisfying Definition 4. According to Definition 4, for any
target Ti, there exists at least one MB containing X,
denoted as MBMBMBMBMBMBMBX. Denote the known MB of Ti as MBMBMBMBMBMBMBi. If
MBMBMBMBMBMBMBX ¼MBMBMBMBMBMBMBi, i.e., MBMBMBMBMBMBMBX happens to be the known MB in
Definition 5, then ZZZZZZZ ¼ fXg, and ZZZZZZZi ¼ ZZZZZZZ (8Ti). We have

IðMBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ; TiÞ ¼ IðMBMBMBMBMBMBMBi; TiÞ and affirm that X 2 ZZZZZZZ.
On the other hand, if MBMBMBMBMBMBMBX 6¼MBMBMBMBMBMBMBi, then ZZZZZZZ ¼ [iðMBMBMBMBMBMBMBX �
MBMBMBMBMBMBMBiÞ and ZZZZZZZi ¼MBMBMBMBMBMBMBi �MBMBMBMBMBMBMBX . Hence, we obtain IðMBMBMBMBMBMBMBi �
ZZZZZZZi [ ZZZZZZZ; TiÞ ¼ IðMBMBMBMBMBMBMBi; TiÞ and can affirm thatX 2 ZZZZZZZ.

Definition 4( Definition 5: Assume ZZZZZZZ is a subset sat-
isfying Definition 5. Suppose 9X 2 ZZZZZZZ is not a common
MB variable, i.e., 9Ti such that X =2MBMBMBMBMBMBMBi (8MBMBMBMBMBMBMBi). Then,
by the chain rule of mutual information [25]:

IðMBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ � fXg; TiÞ
¼ IðMBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ; TiÞ � IðX;TijMBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ � fXgÞ:

(2)

According to Eq. (1), MBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ is a Markov blanket
of Ti. Since 8MBMBMBMBMBMBMBi, X =2MBMBMBMBMBMBMBi, MBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ � fXg is a
Markov blanket of Ti. Thus,

IðX;TijMBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ � fXgÞ ¼ 0 (3)

Substituting Eqs. (3) into (2) and we obtain IðMBMBMBMBMBMBMBi � ZZZZZZZi [
ZZZZZZZ � fXg; TiÞ ¼ IðMBMBMBMBMBMBMBi; TiÞ. Thus, ZZZZZZZ � fXg � ZZZZZZZ also satis-
fies Definition 5, contradicting the condition. Therefore,
all variables in ZZZZZZZ satisfy Definition 4. (Q.E.D.) tu
Theorem 4 demonstrates the equivalence of Definitions 4

and 5. Hence, the proof of “Definition 4 ) Definition 5”
should find a sound ZZZZZZZ that contains a given common MB
variable X satisfying the Definition 4. Correspondingly, the
proof of “Definition 4( Definition 5” should prove that all
variables in the ZZZZZZZ satisfying the requirements in Definition
5 are included by the MB of any target. By Definition 5, the
problem discussed in this paper can be described as: for
non-target variable set UUUUUUU and target set TTTTTTT , we need to search
two types of MB variables from UUUUUUU , i.e., (1) the common MB
variables of TTTTTTT , and (2) the target-specific MB variables of
each single target Ti 2 TTTTTTT . And the designed algorithms
should search the two types of MB variables for both TTTTTTT
and subsets of TTTTTTT . Different from the single-target prob-
lem, a special issue must be discussed in the multi-target
case, i.e., the possible correlations in the target set. To
simplify the problem, we first propose the Target-rela-
tion Assumption.

Assumption 2. (Target-relation Assumption) 8T1; T2 2 T,
T1 =2MBðT2Þ and T2 =2MBðT1Þ.
Target-relation Assumption considers the relationships

among targets, and divides the discussion according to
whether a target contains the critical information about
another target. Note that this assumption allows the indirect
dependence between targets, for which an eligible example
is that a target influences another target through a non-tar-
get variable. In Sections 3.2 and 3.3, the property of the com-
mon MB variable is discussed in the cases where Target-
relation Assumption is satisfied and violated, respectively.

3.2 Discussion Under the Target-Relation
Assumption

According to Definition 5, the intersection of MB sets of tar-
gets in TTTTTTT is a common MB variable set of TTTTTTT since ZZZZZZZ ¼ ZZZZZZZi ¼Tk

i¼1 MBMBMBMBMBMBMBi is a constant solution of Eq. (1). For example in
Fig. 3, ZZZZZZZ ¼ fA;Bg. Therefore, if all targets have a unique
MB, then the intersection of these MBs is the intact common

Fig. 4. An example of common MB variables and target-specific MB vari-
ables with multiple MBs.
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MB variable set. However, the real-world applications
always violate the unique MB assumption, and most targets
have multiple MBs.

Directly finding the multiple MBs is time-consuming
since the time complexity is exponential to the size of the
variable set. It will also suffer from incorrect CI-tests due to
the large conditioning sets in the process. Detecting whether
the Intersection property is violated is a possible method
according to Theorem 2, whereas it is infeasible to identify
the strictly positive joint probability distribution. Another
criterion for unique MB, by Theorem 3, is to detect the
equivalent information, as mainly discussed in this section.
As the multi-target problem has complex relationships, the
equivalent information phenomenon has diversified forms.
It can be roughly classified into two types, i.e., equivalent
information about target variables or non-target variables.
To narrow the discussion, we first prove that only the equiv-
alent information about targets has influences on the identi-
fication of common MB variables.

Theorem 5. For a target T , if for any disjoint variable subsets
X;Y;Z � V� fTg, X and Y do not contain equivalent infor-
mation about T conditioned on Z, then T has a unique MB.

Proof. Assuming that T has two MB sets MBMBMBMBMBMBMB1 and MBMBMBMBMBMBMB2,
then we need to find two variable sets containing equiva-
lent information about T . According to Definition 2, we
have:

T ? VVVVVVV �MBMBMBMBMBMBMB1 � fTgjMBMBMBMBMBMBMB1; T ? VVVVVVV �MBMBMBMBMBMBMB2 � fTgjMBMBMBMBMBMBMB2:

(4)

According to the Decomposition property in Theorem 1,
Eq. (4) indicates that:

T ?MBMBMBMBMBMBMB2 �MBMBMBMBMBMBMB1jMBMBMBMBMBMBMB1; T ?MBMBMBMBMBMBMB1 �MBMBMBMBMBMBMB2jMBMBMBMBMBMBMB2: (5)

Now we prove that MBMBMBMBMBMBMB1 �MBMBMBMBMBMBMB2 and MBMBMBMBMBMBMB2 �MBMBMBMBMBMBMB1 con-
tain equivalent information about T conditioned on
MBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2. Assume that T ? ðMBMBMBMBMBMBMB1 �MBMBMBMBMBMBMB2ÞjMBMBMBMBMBMBMB1 \
MBMBMBMBMBMBMB2. Considering with Eq. (4), we obtain the following
relationship according to the Contraction property in
Theorem 1:

T ? ðVVVVVVV �MBMBMBMBMBMBMB1 � fTgÞ [ ðMBMBMBMBMBMBMB1 �MBMBMBMBMBMBMB2ÞjMBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2:

(6)

Simplify the Eq. (6), then:

T ? ðVVVVVVV � fTg �MBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2ÞjMBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2: (7)

We can conclude from Eq. (7) that MBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2 is an Mb
of T according to Definition 2. However, MBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2 �
MBMBMBMBMBMBMB1 and MBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2 �MBMBMBMBMBMBMB2, which leads to MBMBMBMBMBMBMB1 and
MBMBMBMBMBMBMB2 are Mb instead of MB, contradicting the condition.
Therefore,

T 6? ðMBMBMBMBMBMBMB1 �MBMBMBMBMBMBMB2ÞjMBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2: (8)

Similarly, we can prove that

T 6? ðMBMBMBMBMBMBMB2 �MBMBMBMBMBMBMB1ÞjMBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2: (9)

Combining Eqs. (8) and (9) with Eq. (5), we can conclude
that, MBMBMBMBMBMBMB1 �MBMBMBMBMBMBMB2 and MBMBMBMBMBMBMB2 �MBMBMBMBMBMBMB1 contain equivalent
information about T conditioned on MBMBMBMBMBMBMB1 \MBMBMBMBMBMBMB2, contra-
dicting the condition.Hence, T has a uniqueMB. (Q.E.D.)tu
Theorem 5 proves that multiple MBs of a target are

brought by the equivalent information about the corre-
sponding target, while equivalent information about non-
target variables does not influence the uniqueness of MB, as
well as common MB variables. Therefore, only equivalent
information about each target needs to be considered for
common MB variable identification. Theorem 6 is proposed
below to describe this criterion.

Theorem 6. Let MBi denote the MB set of Ti (i 2 f1; 2; . . . ; kg)
in target set T ¼ fT1; T2; . . . ; Tkg. Under the Target-relation
Assumption, Z � U is a common MB variable set of targets in
T if and only if 9Zi �MBi such that Zi and Z contain equiva-
lent information about Ti conditioned on MBi � Zi for each
Ti 2 T.

Proof. “)”: Since ZZZZZZZ is a common MB variable set of labels
in TTTTTTT , then for each Ti 2 TTTTTTT , there exists an MB set MBMBMBMBMBMBMBi and
corresponding MB subset ZZZZZZZi �MBMBMBMBMBMBMBi s.t.

IðMBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ; TiÞ ¼ IðMBMBMBMBMBMBMBi; TiÞ; (10)

where MBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ is also an MB of Ti. According to
Definition 2, we have ZZZZZZZ ? TijMBMBMBMBMBMBMBi and ZZZZZZZi ? TijMBMBMBMBMBMBMBi �
ZZZZZZZi [ ZZZZZZZ. According to the minimality of the MB, we have
ZZZZZZZi 6? TijMBMBMBMBMBMBMBi � ZZZZZZZi (corresponding MB: MBMBMBMBMBMBMBi) and ZZZZZZZ 6?
TijMBMBMBMBMBMBMBi � ZZZZZZZi (corresponding MB:MBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ). Accord-
ing to the four conditional (in)dependence relations, we
can conclude that 9ZZZZZZZi �MBMBMBMBMBMBMBi such that ZZZZZZZi and ZZZZZZZ contain
equivalent information about Ti conditioned on MBMBMBMBMBMBMBi �
ZZZZZZZi for each Ti 2 TTTTTTT according to Definition 3.

“(”: To prove that ZZZZZZZ is a common MB variable set for
TTTTTTT , we need to prove that ZZZZZZZ satisfies Eq. (1) in Definition
5. By the chain rule of mutual information, we express
MBMBMBMBMBMBMBi [ ZZZZZZZ as ðMBMBMBMBMBMBMBi [ ZZZZZZZ � ZZZZZZZiÞ [ ZZZZZZZi and obtain:

IðMBMBMBMBMBMBMBi [ ZZZZZZZ � ZZZZZZZi; TiÞ ¼ IðMBMBMBMBMBMBMBi [ ZZZZZZZ; TiÞ
� IðZZZZZZZi; TijMBMBMBMBMBMBMBi [ ZZZZZZZ � ZZZZZZZiÞ:

(11)

Since ZZZZZZZ and ZZZZZZZi contain equivalent information about Ti,
according to Definition 3, we have:

IðZZZZZZZi; TijMBMBMBMBMBMBMBi [ ZZZZZZZ � ZZZZZZZiÞ ¼ 0: (12)

Since ZZZZZZZ ? TijMBMBMBMBMBMBMBi, we have:

IðMBMBMBMBMBMBMBi [ ZZZZZZZ; TiÞ ¼ IðMBMBMBMBMBMBMBi; TiÞ: (13)

Substitute Eqs. (12) and (13) into Eq. (11), thus,

IðMBMBMBMBMBMBMBi [ ZZZZZZZ � ZZZZZZZi; TiÞ ¼ IðMBMBMBMBMBMBMBi; TiÞ: (14)

According to Theorem 5, all common MB variables are
considered in the theorem since the Target-relation
Assumption is satisfied and thus any target is not an MB
variable of another.

In conclusion, Theorem 6 is true. (Q.E.D.) tu
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Theorem 6 proves that equivalent information between
the MB subset and another variable set can be used to detect
common MB variables. For example in Fig. 4, fA;Bg and
fC;Dg contain equivalent information about T1 (condi-
tioned on E), fA;Bg and fG;Hg contain equivalent infor-
mation about T2 (conditioned on E). Assume it has been
known that fC;D;Eg is an MB set of T1, and fF;G;Hg is an
MB set of T2. According to Theorem 6, fA;Bg can be
detected as common MB variables of fT1; T2g without min-
ing other MB sets of T1 and T2. The conclusion can be
obtained by following the proof of Theorem 6. Since
fC;D;Eg is the MB of T1, IðT1; fC;D;EgÞ ¼ IðT1; fC;D;
Eg [ fA;BgÞ according to property of MB. As fC;Dg and
fA;Bg contain equivalent information about T1 (condi-
tioned on E), we immediately obtain IðT1; fC;DgjfA;
B;EgÞ ¼ 0 due to the independence relation T1 ? fC;Dgj
fA;B;Eg. And according to the chain rule of mutual infor-
mation, IðT1; fA;B;C;D;EgÞ ¼ IðT1; fA;B;EgÞ þ IðT1; fC;
DgjfA;B;EgÞ. Therefore, IðT1; fA;B;EgÞ ¼ IðT1; fA;B;C;
D;EgÞ ¼ IðT1; fC;D;EgÞ and fA;B;Eg is an MB of T1.

3.3 Relax the Target-Relation Assumption

When the Target-relation Assumption is relaxed, there might
exist more common MB variables undetected. Different from
the case satisfying the assumption, the local relations around
a target are represented with non-target variables as well as
targets. Therefore, it is improper tomake a difference between
non-target variables and targetswhenmining theMBs of each
target. Furthermore, the equivalent information about both
targets and non-target variables needs to be considered so
that some common MB variables are not ignored. Theorem 7
is proposed below to describe the case where common MB
variables cannot be detected.

Theorem 7. For targets T1; T2 2 T, T1 2MB2 and T2 2MB1,
variable subset Z is a common MB variable set of T1 and T2 but
might not be detected if the following statements hold: (1) Z �
MB2. T2 and Z contain equivalent information about T1 condi-
tioned on MB1 � fT2g. (2) Z �MB1 and Z �MB2. T1 and
T2 contain equivalent information about Z.

Proof. For (1): Since ZZZZZZZ �MBMBMBMBMBMBMB2, ZZZZZZZ satisfies Eq. (1) in Defini-
tion 5 for T2. We prove that ZZZZZZZ satisfies Eq. (1) for T1.
According to the chain rule of mutual information, we
have:

IðT1; ðMBMBMBMBMBMBMB1 � fT2gÞ [ ZZZZZZZÞ
¼ IðT1; ZZZZZZZjMBMBMBMBMBMBMB1 � fT2gÞ þ IðT1;MBMBMBMBMBMBMB1 � fT2gÞ;

(15)

Also,MBMBMBMBMBMBMB1 can be split intoMBMBMBMBMBMBMB1 � fT2g and fT2g:

IðT1;MBMBMBMBMBMBMB1Þ ¼ IðT1; T2jMBMBMBMBMBMBMB1 � fT2gÞ þ IðT1;MBMBMBMBMBMBMB1 � fT2gÞ:
(16)

Since T2 and ZZZZZZZ contain equivalent information about T1,
thus:

IðT1; ZZZZZZZjMBMBMBMBMBMBMB1 � fT2gÞ ¼ IðT1; T2jMBMBMBMBMBMBMB1 � fT2gÞ: (17)

Then, substituting Eq. (17) into Eqs. (15) and (16), we
obtain:

IðT1; ðMBMBMBMBMBMBMB1 � fT2gÞ [ ZZZZZZZÞ ¼ IðT1;MBMBMBMBMBMBMB1Þ: (18)

Thus, ZZZZZZZ is a common MB variable set of T1 and T2. Since
T1 ? ZZZZZZZjMBMBMBMBMBMBMB1 and T2 2MBMBMBMBMBMBMB1, if T2 is selected by the MB
discovery algorithm first, then ZZZZZZZ will be excluded in the
MB set according to the Decomposition property in Theo-
rem 1.

For (2): It is readily justified that the variables in ZZZZZZZ are
common MB variables of T1 and T2 according to Defini-
tion 4. Since T1 and T2 contain equivalent information
about ZZZZZZZ, then T1 ? ZZZZZZZjT2 and T2 ? ZZZZZZZjT1. If T1 is selected
by the MB discovery algorithm before ZZZZZZZ when selecting
MB of T2 and T2 is selected before ZZZZZZZ when selecting MB
of T1, then ZZZZZZZ can not be found. (Q.E.D.) tu
We use an example to illustrate Theorem 7. If a target T1

and the common MB variable A contain equivalent informa-
tion about another target T2, then A might be ignored since
A ? T2jT1, which describes the case in Theorem 7 (1). While
the same risk does not exist under the case that two varia-
bles contain equivalent information about a target since
these variables are found when detecting the equivalent
information according to Theorem 6. By Theorem 7 (1), it is
necessary to treat all of the targets and non-target variables
as ordinary variables so that some common MB variables
are not ignored due to the influence of targets. For Theorem
7 (2), also using the above example, when the two targets T1

and T2 contain equivalent information about common MB
variable A, A might be discarded since it might be excluded
when searching MB sets both of T1 and T2. To solve this
problem, we can remove the target variable from the discov-
ered MB first and continue to search the undetected
variables.

3.4 Learn the Common& Target-Specific MB
Variables

Based on the property of common MB variables, we pro-
pose the Common and Target-specific MB variable discov-
ery (CTMB) algorithm. For the sake of preciseness, the
above analyses provide the corresponding conditioning set
where the equivalent information exists. While in the design
of the algorithm, considering the complex conditioning set
will introduce some time-consuming and unreliable pro-
cesses. For comprehensive consideration of effectiveness
and efficiency, we adopt a simplified strategy presented in
[12], i.e., assume that all information equivalence relations
are context-independent and there is no need to consider
the conditioning sets [12]. CTMB consists of three phases:

Phase 1: Mine one MB for each target. Though each target
could have multiple MBs, Phase 1 only needs to find one of
them. According to Theorem 7 (1), CTMB equally treats
targets and non-target variables and only focuses on the
relations among them. A divide-and-conquer-based MB dis-
covery algorithm A is used so that CTMB can distinguish
the parent-child set PCPCPCPCPCPCPCT and spouse set SPSPSPSPSPSPSPT ) of T . Here,
the child of the corresponding spouse in SPSPSPSPSPSPSPT also needs to
be recorded, which will be used in Phase 3.

Phase 2: To guarantee the accuracy when Target-relation
Assumption is violated, Phase 2 retrieves the ignored varia-
bles whose information is equivalently included by two tar-
gets, which is the case described in Theorem 7 (2). For each
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pair of targets where one is included by the MB of another
(Line 6), Line 7 finds the Z satisfying the condition in Theo-
rem 7 (2), which is retrieved in Lines 8-9.

Algorithm 1. The CTMB Algorithm

1: Input: Target set TTTTTTT and non-target variable set UUUUUUU ; A divide-
and-conquer-based MB discovery algorithm A with signifi-
cance level a.
{Phase 1: Search an MB for each target.}

2: for each T 2 TTTTTTT do
3: PCPCPCPCPCPCPCT ; SPSPSPSPSPSPSPT ; CCCCCCCT  Learn the MB of T from TTTTTTT [ UUUUUUU � fTg

usingA, and record the parents and children to PCPCPCPCPCPCPCT ,
and spouses to SPSPSPSPSPSPSPT with corresponding child in CCCCCCCT .
{Phase 2: Retrieve the ignored variables.}

4: for each Ti; Tj 2 TTTTTTT do
5: if Ti 2 PCPCPCPCPCPCPCj do
6: for each ZZZZZZZ satisfying ZZZZZZZ 6? Ti, ZZZZZZZ 6? Tj, ZZZZZZZ ? TijTj and

ZZZZZZZ ? TjjTi do
7: PCPCPCPCPCPCPCTj  PCPCPCPCPCPCPCTj [ ZZZZZZZ if 8SSSSSSS � PCPCPCPCPCPCPCj � fTig, ZZZZZZZ 6? TjjSSSSSSS.

{Phase 3: Distinguishing process.}
8: forX 2 TTTTTTT [T2TTTTTTT CCCCCCCT do
9: for each ZZZZZZZ � UUUUUUU � PCPCPCPCPCPCPCX and ZZZZZZZ 6? X do
10: if 9SSSSSSS � PCPCPCPCPCPCPCX s.t.X ? ZZZZZZZjSSSSSSS andX ? SSSSSSSjZZZZZZZ then
11: EIEIEIEIEIEIEIX ¼ EIEIEIEIEIEIEIX [ f< SSSSSSS;ZZZZZZZ > g
12: Common MB variables for any target (sub)sets TTTTTTTSSSSSSS � TTTTTTT :

CCVCCVCCVCCVCCVCCVCCV TTTTTTTSSSSSSS
 fXjX 2 ZZZZZZZ where QTTTTTTTSSSSSSS

ðZZZZZZZÞ ¼ 1g, and target -spe-
cific MB variables for each target T 2 TTTTTTT : TCVTCVTCVTCVTCVTCVTCV T ¼ fXjX 2
MBMBMBMBMBMBMBT andX =2 CCVCCVCCVCCVCCVCCVCCV TTTTTTTSSSSSSS

for 8TTTTTTTSSSSSSS including Tg.

Phase 3: Find the variables containing equivalent infor-
mation first and then discover the common and target-spe-
cific MB variables. Since CI-tests with large-scale variable
sets will be involved if we directly find the equivalent sub-
sets from MB of each target as described in Theorem 6,
CTMB searches the common MB variables from parent-
child set and spouse set, respectively. Thus, both of the
equivalent MB variables of targets in TTTTTTT and variables in CCCCCCC
are recorded to the EIEIEIEIEIEIEI of each corresponding variable (Lines
12-18) to make preparations for the discovery of common
MB variables. This process considers the influence from
multiple MBs by mining the equivalent information, instead
of learning all MBs directly, where the strategy is different
from multiple MB learning algorithms. According to Theo-
rem 6, the variables in subset ZZZZZZZ are common MB variables if
at least one of the three conditions in Eq. (19) is satisfied for
each target in TTTTTTT , which can be formalized as the logical
operation in Eq. (19).

QTTTTTTT ðZZZZZZZÞ ¼
^

T2TTTTTTT
ðu1ðZZZZZZZ; T Þ _ u2ðZZZZZZZ; T Þ _ u3ðZZZZZZZ; T ÞÞ (19)

� u1ðZZZZZZZ; T Þ ¼ 1 when 9ZZZZZZZT �MBMBMBMBMBMBMBT s.t. ZZZZZZZ ¼ ZZZZZZZT , and 0
otherwise.

� u2ðZZZZZZZ; T Þ ¼ 1when 9ZZZZZZZT � PCPCPCPCPCPCPCT s.t. < ZZZZZZZ;ZZZZZZZT >2 EIEIEIEIEIEIEIT ,
and 0 otherwise.

� u3ðZZZZZZZ; T Þ ¼ 1when 9ZZZZZZZT � SPSPSPSPSPSPSPT s.t. < ZZZZZZZ;ZZZZZZZT >2 EIEIEIEIEIEIEIC ,
and 0 otherwise, where C is the common child of ZZZZZZZT

and T .
Specifically, for a target T and variable subset ZZZZZZZ,

u1ðZZZZZZZ; T Þ ¼ 1 indicates that ZZZZZZZ is a subset of the searched MB,
and u2ðZZZZZZZ; T Þ ¼ 1 indicates that ZZZZZZZ is equivalent with a subset

of the searched PC set, and u3ðZZZZZZZ; T Þ ¼ 1 indicates that ZZZZZZZ is
equivalent with a subset of the searched SP set. ZZZZZZZ satisfying
one of the conditions contains critical information about this
target, and thus variables in ZZZZZZZ making QTTTTTTT ðZZZZZZZÞ ¼ 1 are com-
mon MB variables of targets in TTTTTTT . Thus, in Line 19, we
obtain common MB variables CCVCCVCCVCCVCCVCCVCCV TTTTTTTSSSSSSS

of any target subset
TTTTTTTSSSSSSS and target-specific MB variables TCVTCVTCVTCVTCVTCVTCV T for each target T .

3.5 A Toy Example to Illustrate its Efficiency

In Fig. 5, a two-target example is provided, where equiva-
lent information occurs once on each target. We revisit the
trace of CTMB and explain the time efficiency against brute-
force methods, which search the MB for different targets
first and then take the intersection of MBs as common MB
variables. Assume A and C contain equivalent information
about T1 and T2. Sing-MB algorithm MMMB and multiple-
MB algorithm TIE* are chosen as benchmarks. For MMMB,
it is conducted on two targets respectively and outputs
MB½T1� ¼ fC;D;E; Fg (152 CI-tests) and MB½T2� ¼ fC;Dg
(106 CI-tests) with 258 CI-tests. Hence, the common MB var-
iables found by MMMB are incomplete since A is ignored.
For TIE*, it uses MMMB to search an initial MB
(MB½T1�1 ¼ fC;D;E; Fg) first (152 CI-tests), then it removes
an MB subset fCg and searches the MB again, and obtains
MB½T1�2 ¼ fA;D;E; Fg with 116 CI-tests. The same process
will be repeated when other MB subsets of T1 (fDg, fEg,
fFg, fA;Cg) are removed (with 88, 88, 148, 62 CI-tests,
respectively) until all MBs are discovered. Similarly, there
are 74, 52, 52, 52, and 31 CI-tests when removing fCg, fDg,
fEg, fFg, and fA;Cg, respectively. Therefore, TIE* needs to
use 1021 CI-tests. For CTMB, it also uses MMMB to search
an initial MB first (258 CI-tests), then it constructs the EIEIEIEIEIEIEI for
targets T1; T2 and child variable E, with 4, 7, and 20 CI-tests
respectively. Then, we obtain EIEIEIEIEIEIEIT1 ¼ f< A;C > g, EIEIEIEIEIEIEIT2 ¼
f< A;C > g, EIEIEIEIEIEIEIE ¼ ? . Therefore, CTMB discovers com-
plete common MB variable sets with 289 CI-tests.

Owing to Phase 3, CTMB does not need to discover all
MBs, which not only improves the time efficiency, but also
yields better results due to more small-scale conditioning
sets in CI-tests compared with the brute-force methods.
Detailed time complexity analysis and experiments are pro-
vided in Sections 4.3 and 5.1.

4 APPLYING CTMB TO MULTI-LABEL
FEATURE SELECTION

To demonstrate the generality of CTMB proposed in Sec-
tion 3.4, we apply CTMB to multi-label feature selection
problem. Compared with the single-label feature selection,
the additional introduced label correlations construct more
complex relationships in multi-label data, including fea-
ture-feature, feature-label and label-label relationships.
Although the label relationships are crucial, it is unreason-
able to specially treat them as more important information.

Fig. 5. A toy example to illustrate the efficiency of CTMB.
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Conversely, the ideal strategy is to consider the relation-
ships of all variables in a unified framework. Therefore, in
this section, we try to use CTMB to handle these various
forms of complex relationships in consideration of its ability
to map the complex relationships among features and labels
to a BN model. And the process of constructing the skeleton
of the graph on multi-label data naturally takes all types of
relationships into consideration, which can be easily ‘read’
from the graph. In the following, the novel CTMB-driven
multi-Label Feature Selection (CLFS) algorithm is present in
Section 4.1. Subsequently, the relevance and redundancy of
CLFS are analyzed in Section 4.2, and the time complexity
of CLFS is analyzed in Section 4.3.

4.1 CLFS Algorithm

Pellet and Elisseeff have proved that MB is the optimal solu-
tion for single-label feature selection problem under the
faithfulness condition [10], and the strongly relevant features
are included in itsMB set in terms of Kohavi-John feature rel-
evance [9]. Thus, on each label, the independence property of
MB indicates that the variable subset contains all of the pre-
dictive information about each corresponding label, while
the minimality of it can guarantee the minimal redundancy
in the variable set. As previously mentioned, in multi-label
data, the union of MB sets can not be used directly as the
selected feature subset due to the redundancy between MBs
of different labels. While CTMB can be used to identify and
select the common features simultaneously containing pre-
dictive information about several labels as many as possible
to minimize the redundancy in the selected feature subset,
which is just what Theorem 6 does, i.e., replacing the MB
subset ZZZZZZZi of multiple labels with a common equivalent fea-
ture subsetZZZZZZZ and keeping the information constant.

It is worth mentioning that, using CTMB to directly
search the common features of several labels might import
some labels into the feature subset due to the case violating
the Label-relation Assumption. Since labels are usually
undetermined and thus can neither used as a factor to infer
another label nor a feature to model a predictive learner (or
classifier) in most real-world multi-label applications, it is
necessary to remove them and find other predictive fea-
tures. However, it does not mean that we can directly select
features in the variable set UUUUUUU seeing that if a pair of labels
are the parent or child of each other, the spouse will be
ignored when searching MB in UUUUUUU . To search the substitutes,
we can remove the labels in the discovered MB set and con-
tinue to search the variables containing similar information
until no label is included in the MB. Now, we present the
CLFS in Algorithm 2.

CLFS finds an MB set of each label to detect the equiva-
lent features for each label, so it inherits Phase 1 and Phase
2 of CTMB. We explain the additional components of Algo-
rithm 2 below:

(1) Lines 3-8: Find the predictive common features
shielded by label relations. Through removing the labels
from the current PCPCPCPCPCPCPCT set, the information loss about the
label needs to be supplied with the features in the PCPCPCPCPCPCPC of
each removed label. Thus, in Line 6, X is traversed fromS

Ti2PCPCPCPCPCPCPCT\TTTTTTTPCPCPCPCPCPCPCi � ðPCPCPCPCPCPCPCT \ TTTTTTT Þ. Since the X could be a label,
Lines 5-6 might be iterated several times.

(2) Lines 10-13: Search the common features and label-
specific features. To minimize the redundancy as previously
discussed, Line 11 finds the common feature subset ZZZZZZZ con-
taining information about as many labels as possible, which
satisfies the three rules in Eq. (19). At the same time, CLFS
can record the relationships between selected features and
each label, i.e., “which labels does a selected feature in ZZZZZZZ
relate to”. Then, the corresponding ZZZZZZZT needs to be removed
from the PCPCPCPCPCPCPCT or SPSPSPSPSPSPSPT to guarantee no redundancy about the
same label. The above process is iterated until there are
no features containing information about multiple labels
(jTTTTTTTSj > 1). The remaining features in PCPCPCPCPCPCPCT and SPSPSPSPSPSPSPT are
label-specific features of their corresponding label T .

Algorithm 2. The CLFS Algorithm

1: Input: Label set TTTTTTT and features set UUUUUUU ; A divide-and-con-
quer-based MB discovery algorithm A with significance
level a.

2: CTMB (Phase 1, Phase 2)
3: for each T 2 TTTTTTT do
4: repeat
5: PCPCPCPCPCPCPCT  PCPCPCPCPCPCPCT � TTTTTTT
6: PCPCPCPCPCPCPCT  PCPCPCPCPCPCPCT [ fXjX 2

S
Ti2PCPCPCPCPCPCPCT\TTTTTTTPCPCPCPCPCPCPCi � ðPCPCPCPCPCPCPCT\

TTTTTTT Þ andX 6? T jZZZZZZZ for 8ZZZZZZZ � PCPCPCPCPCPCPCTg
7: until PCPCPCPCPCPCPCT \ TTTTTTT ¼ ?

8: CTMB (Phase 3: Lines 12 - 18)
9: repeat
10: Select ZZZZZZZ to CFCFCFCFCFCFCF where QTTTTTTTS

ðZZZZZZZÞ ¼ 1 for the most large-
scale jTTTTTTTS j (TTTTTTTS � TTTTTTT ).

11: PCPCPCPCPCPCPCT  PCPCPCPCPCPCPCT � ZZZZZZZT , SPSPSPSPSPSPSPT  SPSPSPSPSPSPSPT � ZZZZZZZT for each T .
12: until for 8ZZZZZZZ, QTTTTTTTS

ðZZZZZZZÞ 6¼ 1 for all jTTTTTTTS j > 1.
13: Output: Common features CFCFCFCFCFCFCF , and label-specific features

PCPCPCPCPCPCPCT [ SPSPSPSPSPSPSPT for each T .

Compared with traditional multi-label feature selection
algorithms, the superiority of CLFS is reflected in three
aspects: (1) Interpretability: CLFS not only selects predictive
features but also interprets which labels a select feature
influences, i.e., identifies the common features and label-
specific features; (2) Practicability: CLFS automatically
determines the number of selected features without training
an additional classifier to achieve the optimal accuracy; (3)
Theoretical Reliability: It can be proved that CLFS achieves
maximum relevance and minimal redundancy.

4.2 Analyses of Relevance and Redundancy

In this subsection, we will give the theoretical analyses of
relevance and redundancy.

4.2.1 Relevance

We prove that, by replacing ZZZZZZZi with ZZZZZZZ for each Ti 2 TTTTTTT , the
obtained feature subset

S
Ti2TTTTTTT ðMBMBMBMBMBMBMBi � ZZZZZZZiÞ [ ZZZZZZZ � TTTTTTT 5 con-

tains the same information as U about TTTTTTT . Mathematically in
other words, all features excluded by

S
Ti2TTTTTTT ðMBMBMBMBMBMBMBi � ZZZZZZZiÞ [

ZZZZZZZ � TTTTTTT are independent of TTTTTTT conditioned on
S

Ti2TTTTTTT ðMBMBMBMBMBMBMBi �
ZZZZZZZiÞ [ ZZZZZZZ � TTTTTTT . It is sufficient to prove the case with TTTTTTT ¼

5. We use
S

Ti2TTTTTTT ðMBMBMBMBMBMBMBi � ZZZZZZZiÞ [ ZZZZZZZ � TTTTTTT instead of
S

Ti2TTTTTTT ðMBMBMBMBMBMBMBi �
ZZZZZZZiÞ [ ZZZZZZZ as in Theorem 6 since any label cannot be used to predict
another label in the feature selection problem.

4972 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 24,2023 at 07:20:25 UTC from IEEE Xplore.  Restrictions apply. 



fTi; Tjg since any multi-label case is a direct consequence of
the two-label case using induction on the number of varia-
bles involved in TTTTTTT . According to Eq. (14), MBMBMBMBMBMBMBi � ZZZZZZZi [ ZZZZZZZ is a
Markov blanket of Ti, denoted asMMMMMMMi. Thus,

Ti ? UUUUUUU �MMMMMMMi [ fTjgjMMMMMMMi: (20)

Decompose the UUUUUUU �MMMMMMMi [ fTjg in Eq. (20) as:

UUUUUUU �MMMMMMMi [ fTjg ¼ðUUUUUUU �MMMMMMMi �MMMMMMMjÞ[
ðMMMMMMMj �MMMMMMMi � fTig [ fTjgÞ:

(21)

According to the Weak union property in Theorem 1, we
have:

Ti ? ðUUUUUUU �MMMMMMMi �MMMMMMMjÞjðMMMMMMMj � fTig [ fTjgÞ: (22)

Due to the symmetry between Ti and Tj, a similar relation-
ship will exist:

Tj ? ðUUUUUUU �MMMMMMMi �MMMMMMMjÞjðMMMMMMMi � fTjg [ fTigÞ: (23)

According to Theorem 1, we combine Eqs. (22) and (23), and
obtain:

UUUUUUU � ðMMMMMMMi [MMMMMMMj � fTi; TjgÞ ? fTi; Tjg
jMMMMMMMi [MMMMMMMj � fTi; Tjg:

(24)

Thus, IðTTTTTTT; UUUUUUUÞ ¼ IðTTTTTTT;MMMMMMMi [MMMMMMMj � fTi; TjgÞ, which means that
the selected feature subset of CLFS contains all information
about the labels and achieves the maximum relevance
among the subsets of feature sets.

4.2.2 Redundancy

We continue to prove under the case TTTTTTT ¼ fTi; Tjg. Assume
that there exists a subset of SSSSSSS � S

Ti2TTTTTTT ðMBMBMBMBMBMBMBi � ZZZZZZZiÞ [ ZZZZZZZ � TTTTTTT
such that it also contains the same information as U about
TTTTTTT , then:

Ti ? UUUUUUU � SSSSSSSjSSSSSSS (25)

We construct a subset of MMMMMMMi, AAAAAAA ¼MMMMMMMi \ fTjg [ SSSSSSS, to assist
the analysis. MMMMMMMi can be written as the union of two sets
ðMMMMMMMi �AAAAAAAÞ [ ðMMMMMMMi \AAAAAAAÞ. Thus, we have:

Ti ? UUUUUUU �MMMMMMMi � fTigjðMMMMMMMi �AAAAAAAÞ [ ðMMMMMMMi \AAAAAAAÞ: (26)

According to Eq. (25), extend the SSSSSSS as a more large-scale Mb
SSSSSSS [ fTjg [ ðUUUUUUU �MMMMMMMi � fTigÞ, which is equivalent to ðMMMMMMMi \
AAAAAAAÞ [ ðUUUUUUU �MMMMMMMi � fTigÞ. Then, we have

Ti ?MMMMMMMi �AAAAAAAjðMMMMMMMi \AAAAAAAÞ [ ðUUUUUUU �MMMMMMMi � fTigÞ: (27)

If the Intersection property in Theorem 1 is satisfied here,
then Eqs. (26) and (27) indicate that:

Ti ? ðMMMMMMMi �AAAAAAAÞ [ ðUUUUUUU �MMMMMMMi � fTigÞjMMMMMMMi \AAAAAAA

) Ti ? UUUUUUU � ðMMMMMMMi \AAAAAAAÞ � fTigjMMMMMMMi \AAAAAAA:
(28)

Thus, MMMMMMMi \AAAAAAA is an Mb of Ti. However, MMMMMMMi is an MB of Ti,
thus, MMMMMMMi \AAAAAAA ¼MMMMMMMi. Also, MMMMMMMi �MMMMMMMi \AAAAAAA, i.e., ðMMMMMMMi � fTjgÞ [
ðMMMMMMMi \ fTjgÞ � SSSSSSS [ ðMMMMMMMi \ fTjgÞ. Hence,MMMMMMMi � fTjg � SSSSSSS. Simi-
larly, MMMMMMMj � fTig � SSSSSSS. Since SSSSSSS is a subset of ðMMMMMMMi � fTjgÞ [

ðMMMMMMMj � fTigÞ, the above three equations indicate that SSSSSSS ¼
ðMMMMMMMi � fTjgÞ [ ðMMMMMMMj � fTigÞ.

In conclusion, if the Intersection property is satisfied, no
redundancy exists in the

S
Ti2TTTTTTT ðMBMBMBMBMBMBMBi � ZZZZZZZiÞ [ ZZZZZZZ � TTTTTTT . While

if the Intersection property is violated for Eqs. (26) and (27),
then we can assert that UUUUUUU �MMMMMMMi � fTig and MMMMMMMi �AAAAAAA contain
equivalent information about Ti and there might exist
redundancy in

S
Ti2TTTTTTT ðMBMBMBMBMBMBMBi � ZZZZZZZiÞ [ ZZZZZZZ � TTTTTTT . We give an

example to explain the redundancy brought by equivalent
information. Assume that feature subsets fA;Bg and fC;Dg
are equally effective to predict label T1 since they contain
equivalent information about T1, but only fC;Dg can be
used to predict T2. Then, in fA;B;C;Dg, there exists redun-
dancy between fA;Bg and fC;Dg, which could be reduced
by removing fA;Bg. The proposed CLFS algorithm tries to
detect the features containing equivalent information, so the
minimal redundancy is guaranteed in the selected features.

4.3 Time Complexity Analysis

Finally, we provide time complexity analysis as follows. The
computational cost of the MB-based algorithms is measured
via the number of CI-tests. Let j � j denote the scale of vari-
able set � and p denote the largest scale of the parent-child
set of any target. For Phase 1 in CTMB, the time complexity
of the MB discovery process of any target is less than
Oð2ppjUUUUUUU jÞ, and thus the time complexity of Phase 1 is
Oð2ppjUUUUUUU jjTTTTTTT jÞ. For Phase 2, there are fewer than C2

jTTTTTTT j pairs of
targets connecting with each other and the actual operation
for each pair is to traverse the pairwise dependence. Thus,
the time complexity of Phase 2 is Oð2pjUUUUUUUjjTTTTTTT j2Þ. Let the scale
of the child set of targets be c and the largest scale of ZZZZZZZ in
Phase 3 (Line 13) be z, then the computational cost is
Oð2pjUUUUUUUjzðjTTTTTTT j þ cÞÞ. Normally, if only the pairwise dependen-
cies are considered, z is set to 1, as followed by existing MB-
based methods. The extra processes in CLFS possess lower
time complexity. Let m ¼ maxfjTTTTTTT jp; jTTTTTTT j2; jTTTTTTT j þ cg, then the
time complexity of CTMB and CLFS is Oð2pjUUUUUUU jmÞ. For better
performance, z could be set higher so that multivariate
dependence could be considered. Under these circumstan-
ces, the increase in running time is not obvious. The main
reason is that the test results with large-scale ZZZZZZZ and small-
scale ZZZZZZZ could be used to derive each other. For example, if
ZZZZZZZ ? X, then any subsets ZZZZZZZ0 � ZZZZZZZ satisfy ZZZZZZZ0 ? X, and the con-
verse proposition could also simplify the computational
process.

4.4 Difference With MB-MCF

As an MB-based multi-label feature selection algorithm, it is
necessary to state the main difference between CLFS and
MB-MCF, another MB-based method presented in our con-
ference paper [35]: (1) From the aspect of discussed issues:
Wu et al. [35] study multi-label feature selection problem
and design the MB-MCF based on empirical knowledge
without reliable theoretical guarantee. While in this paper,
we discuss the MB discovery problem for variable set and
present a complete theoretical framework, which provides
the theoretical guarantee for CLFS. (2) From the aspect of
the proposed algorithms: CLFS selects more relevant fea-
tures than MB-MCF since it additionally considers the
spouse variables, which could enhance the predictive power
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of child features [7]. Moreover, due to the analyses of label
relations, CLFS better shields its negative influence on the
feature selection process, so that more relevant features can
be identified. Based on CTMB, CLFS can discover most of
the common MB variables, which help CLFS remove more
redundant features than MB-MCF.

5 EXPERIMENTS

We first verify the effectiveness of CTMB on synthetic data
sets with foregone (in)dependence relationships in Sec-
tion 5.1 by comparing precision, recall, and time efficiency.
Afterwards, the multi-label feature selection experiments
are conducted on real-world data sets to demonstrate the
superiority of the CLFS against traditional algorithms, MB-
MCF (in Section 5.2), and SHAP-based methods (in Sec-
tion 5.3). We further present the relationships between
labels and selected features on the Emotions data set in Sec-
tion 5.4 to demonstrate the interpretability of CLFS.

5.1 Learn Common and Target-Specific MB
Variables: Precision, Recall, and Time Efficiency

In this section, we present an evaluation of CTMB for the
identification of common and target-specific variables in
simulated data. The data sets are sampled from synthetic
Bayesian networks with the simulation method presented
in [36]. Simulated data allow us to evaluate methods in a
controlled setting where the underlying mechanism and all
MB variables of each target are exactly known. Detailed
experiment settings are presented below.

Experiment Parameters on Synthetic Data. To validate CTMB
and corresponding theory in this paper, each data set is set
with different controlled parameters: (1) percentage of the tar-
gets that have direct relationshipswith each other (pc); (2) per-
centage of the targets that have multiple MBs (pm). The
remaining settings to simulate a Bayesian network, are the
same in all experiment groups,which are given in Table 1. For
each target, we randomly choose 5-10 non-target variables
and targets (their proportions are determined by pc) as the
MB. Among these targets, pm of them have 5-10 equivalent
MBs, which are induced by the probability distribution with
equivalent information. Specifically, if variablesX and Y con-
tain equivalent information about T , then (a) for each combi-
nation of values of X and T such that P ðT ¼ tjX ¼ xÞ ¼ p,
there exists a value y of variable Y such thatP ðT ¼ tjY ¼ yÞ ¼
p, and (b) for every combination of values ofY and T such that
P ðT ¼ tjY ¼ yÞ ¼ p, there exists a value x of variable X such
thatP ðT ¼ tjX ¼ xÞ ¼ p.

Comparing Algorithms 6: Since there are no algorithms for
the identification of common and target-specific MB varia-
bles, we deploy existing MB discovery algorithms to search
the MB variables for different targets first and then take the
intersection of MB sets of different targets as the common
MB variables, and the remaining variables as the target-spe-
cific MB variables. Among extensive MB learning algo-
rithms, we choose several representative algorithms from
each type, including three single MB discovery algorithms
(a simultaneous MB learning algorithm IAMB [13], two

divide-and-conquer MB learning algorithms HITON-MB
[15] and CCMB [18]) and two multiple MB discovery algo-
rithms (KIAMB [16] and TIE* [12]). The characteristics of
these types of algorithms are detailed in Section 2. The value
of k in KIAMB is set to 10 (the average number of MBs). The
MB discovery algorithm in CTMB is HITON-MB [15] and
the parameter in its G2-test [3] is set to 0.05.

Metrics for Evaluation. The frequently usedmetrics Precision
andRecall are adapted tomeasure the accuracy of the searched
common and target-specific MB variables. Precision is the
fraction of retrieved true positives over the total amount of
retrieved variables, and Recall is the fraction of retrieved
true positives over the total amount of true positives. Mathe-
matically

Precision ¼ TP

TP þ FP
; Recall ¼ TP

TP þ FN
; (29)

where TP , FP , and FN denote the number of true positives,
false positives, and false negatives, respectively. The two
metrics are calculated on each type of MB variable, and the
average results of the two types are taken as the perfor-
mance. The results are shown in Tables 2 and 3. Further-
more, the logarithmic CPU time is recorded to compute the
time efficiency.

Performance Comparison. Tables 2 and 3 provide the average
precision and recall of identification of common and target-
specific MB variables. Each group keeps one of the pc and pm
invariant and changes the other, to show the performance of
CTMB and other comparing algorithms in different cases. We
conclude from these results that CTMB constantly performs
better than others in the cases satisfying (pc ¼ 0) and violating
(pc 6¼ 0) the Target-relation Assumption. Specifically for dif-
ferent comparing algorithms: (1) Single MB discovery algo-
rithms IAMB, HITON-MB, and CCMB achieve lower recall
but relatively higher precision with pm > 0, which means
that they fail to identify the two types of variables in the data
sets due to the inability to solve the case with multiple MBs
for some targets. (2) KIAMB uses a randomized strategy to
discover multiple MBs, and thus it has unstable performance
on both precision and recall, and can only capture part of
these two types of variables although it is efficient. (3) TIE*
has better precision and recall compared with other algo-
rithms. However, it is computationally expensive. Like
CTMB, TIE* also considers the common MB variables with
equivalent information, whereas it tries to retrieve all MBs of
each target at the first step, resulting in high computation
time and statically low reliability. Hence, CTMB can be con-
sidered as the first algorithm targeting to distinguish between
common and target-specific MB variables with reasonable
time complexity.

TABLE 1
Experiment Parameters

Parameters Settings

The number of targets 50
The number of non-target variables 1000
The number of training samples 5000
The number of MBs of each target 2[1, 15]
The size of an MB of each target 2[5, 15]

6. Codes are collected in: http://home.ustc.edu.cn/~xingyuwu/
MB.html
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5.2 Multi-Label Feature Selection: Accuracy

To demonstrate the performance of the extended CLFS for
the multi-label feature selection problem, in this subsection,
five state-of-the-art multi-label feature selection algorithms
are compared with four frequently-used metrics. Details of
these experiments are given as follows.

Multi-Label Data Sets.7 The six data sets are taken from
diverse application domains. The domains and standard
statistics are provided in Table 4. Cardinality denotes the
average number of labels per instance, and density normal-
izes the label cardinality by the number of labels.

Comparing Algorithms.8 To validate the performance of
CLFS, six state-of-the-art multi-label feature selection
algorithms are compared, including SFUS [37], CSFS
[38], MIFS [39], CMFS [40], MCLS [41], and the previ-
ously proposed MB-MCF [35]. These recently proposed
algorithms reflect the effectiveness of multi-label feature
selection from different perspectives (or metrics). To
evaluate the effectiveness of proposed methods, we use
the binary classifier SVM cooperating with the multi-
label classification model BR [42] to decompose a multi-
label problem into several independent binary problems
first and compute their classification accuracies archived
by selected features. The main consideration is that BR
does not involve the label correlations, which could
more clearly demonstrate the strengths of these com-
pared algorithms in terms of addressing complex rela-
tionships in multi-label data. Additionally, since CLFS
and MB-MCF measure the importance of features

through uncovering the mechanisms rather than calculat-
ing the correlations, CLFS and MB-MCF do not need to
predetermine the number of selected features, as shown
in Fig. 6.

Metrics for Evaluation. For a fair comparison, we choose
two example-based metrics HammingLoss and Ranking
Loss, and two label-based metrics FMacro and FMicro (macro-
averaging and micro-averaging of F1-measure) [34], to mea-
sure the performances of multi-label classification results
with selected features of each comparing algorithm.
HammingLoss evaluates the ratio of false outputting labels,
including the missed relevant labels and the predicted irrel-
evant labels:

HammingLoss ¼ 1

m

Xm

i¼1

1

n
jŶiDYij; (30)

where m is the number of samples and n is the number of
labels. Ŷi and Yi represent the predicted and real label set of
the i-th sample, respectively. D denotes the symmetric dif-
ference between them.

TABLE 2
Average Precision and Recall of Searched Common and Target-Specific MB Variables With Respect to the Percentage

of the Targets That Have Multiple MBs

Metric pc pm \IAMB \HITON-MB \CCMB \KIAMB \TIE* CTMB

Precision pc ¼ 0:5 pm ¼ 0 0.745 0.919 0.792 0.415 0.746 0.915
pm ¼ 0:5 0.413 0.579 0.567 0.612 0.759 0.909
pm ¼ 1 0.192 0.315 0.287 0.697 0.787 0.906

Recall pc ¼ 0:5 pm ¼ 0 0.659 0.958 0.979 0.625 0.912 0.979
pm ¼ 0:5 0.216 0.305 0.312 0.679 0.915 0.973
pm ¼ 1 0.113 0.152 0.198 0.713 0.903 0.981

Average Time (lgðTimeÞ) 0.473 2.295 2.874 1.629 5.672 2.871

TABLE 3
Average Precision and Recall of Searched Common and Target-Specific MB Variables With Respect to the Percentage

of the Targets That Have Direct Relationships With Each Other

Metric pc pm \IAMB \HITON-MB \CCMB \KIAMB \TIE* CTMB

Precision pc ¼ 0 pm ¼ 0:5 0.452 0.583 0.581 0.672 0.771 0.915
pc ¼ 0:5 0.413 0.579 0.567 0.612 0.759 0.909
pc ¼ 1 0.394 0.560 0.551 0.654 0.715 0.910

Recall pc ¼ 0 pm ¼ 0:5 0.237 0.325 0.346 0.631 0.923 0.970
pc ¼ 0:5 0.216 0.305 0.312 0.679 0.915 0.973
pc ¼ 1 0.191 0.286 0.307 0.677 0.877 0.965

Average Time (lgðTimeÞ) 0.462 2.131 2.559 1.503 5.379 2.812

TABLE 4
Details of the Multi-Label Data Sets

Data set domain #Features #Labels cardinality density

Birds audio 260 19 1.014 0.053
CAL500 music 68 174 26.044 0.150
Emotions music 72 6 1.869 0.311
EUR-Lex text 5000 201 2.213 0.011
Mediamill video 120 101 4.376 0.043
NUS-WIDE images 500 81 1.869 0.023

7. Data Source: http://mulan.sourceforge.net/datasets-mlc.html
8. Codes are collected in: http://home.ustc.edu.cn/�xingyuwu/

Traditional-Multi-label-FS.zip
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RankingLoss evaluates the ratio of reversely ordered label
pairs, i.e., an irrelevant label is ranked higher than a rele-
vant label, which is calculated by:

RankingLoss ¼ 1

m

Xm

i¼1

1

jŶijjYij
jfðy1; y2Þjfðxi; y1Þ

� fðxi; y2Þ; y1 2 Yi; y2 2 Ŷigj; (31)

where f denotes the intermediate real-valued function.
FMicro is the weighted average arithmetic average of

F1-score (harmonic mean of Precision and Recall) over all
m samples, whereas FMacro is an arithmetic average F1-score
of all n labels. Mathematically,

FMicro ¼ 1

n

Xn

i¼1

2TPi

2TPi þ FPi þ FNi
: (32)

FMacro ¼
Pn

i¼1 2TPiPn
i¼1ð2TPi þ FPi þ FNiÞ : (33)

where TPi, FPi, and FNi denote the number of true posi-
tives, false positives, and false negatives in the i-th label.

Performance Comparison. We employ CLFS and other algo-
rithms in comparison to select features first and then train
the BR-SVMwith these selected features. Each experiment is
repeated 10 times with different training and test data, and
we report the average performances, i.e., HammingLoss,

RankingLoss, FMacro, and FMicro. As previously mentioned,
traditional feature selection algorithms need to predetermine
the number of features while CLFS and MB-MCF do not
need to, therefore the percentage of the selected features is
gradually turned in f0:03; 0:06; . . .; 0:27; 0:3g for these tradi-
tional algorithms. Similarly, the regularization parameters
for all algorithms are searched from f0:01; 0:1; 0:3; . . .; 0:9; 1g
by grid search. The MB discovery algorithm in CLFS and
MB-MCF is HITON-MB [15] and the parameter in its G2-test
[3] is set as 0.05. Fig. 6 shows the average HammingLoss,
RankingLoss, FMacro, and FMicro variation curves of different
multi-label feature selection algorithms with respect to the
percentage of selected features.

(1) Comparison with traditional algorithms: As mentioned
previously, CLFS could automatically determine the num-
ber of selected features, and thus its performance trend is a
red dot, instead of a curve. Based on the experimental
results in Fig. 6, we make the following observations:(i)
Under the same ratio of selected features, CLFS achieves the
best performance in terms of four metrics compared with
the traditional feature selection algorithms, as shown in
Fig. 6. (ii) For HammingLoss, FMacro, and FMicro, CLFS con-
sistently outperforms the best performance of these tradi-
tional algorithms. Especially on the large-scale data set
(EUR-Lex, Mediamill, and NUS-WIDE), CLFS achieves sig-
nificantly higher performance compared with traditional
methods, which validates the practicability in the real-

Fig. 6. TheHammingLoss, RankingLoss, FMacro, and FMicro of CLFS and other state-of-the-art algorithms on six real-world data sets.
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world large-scale problem. (iii) For RankingLoss, CLFS is
slightly worse than the CSFS algorithm on Birds data set,
and SFUS algorithms on Emotions data set. It is reasonable
since few algorithms could obtain the best performance on
all these metrics simultaneously. Nevertheless, the perfor-
mance of CLFS is also competitive compared with other
algorithms. (iv) CLFS could automatically find the optimal
number of features. The size of the feature set selected by
CLFS exactly falls nearby the optimal point, and accord-
ingly, CLFS achieves the best performance.

Overall, we can observe from Fig. 6 that, the superiority
compared with traditional algorithms reflects on two sides:
(i) CLFS could automatically determine the relatively opti-
mal number of selected features; and (ii) CLFS achieves the
best or very competitive performances, especially on large-
scale data sets.

(2) Comparison with MB-MCF: On most data sets, CLFS
selects more features than MB-MCF, and accordingly, CLFS
achieves better performance than MB-MCF, which indicates
that CLFS could better determine the relative optimal num-
ber of selected features. The additional features selected by
CLFS generally include two types. Some of these features
are the spouse features of labels, which could enhance the
predictive ability of the direct effects (child features) of
labels. Others are the relevant features shielded by label
relations in the feature selection process, which are
retrieved by CLFS to make up the predictive information
loss contained by some labels. These improvements suggest
that CLFS achieves better performance compared with MB-
MCF.

We also note that MB-MCF and CLFS select the same fea-
tures on the Emotions data set. Nonetheless, the relationships
between labels and features mined by these algorithms are
not exactly the same. In Section 5.4, we demonstrate the rela-
tionships retrieved by CLFS on Emotions, which is slightly
different as comparedwith Fig. 4 in [35].

(3) Stability Analysis: To verify the stability of different
methods, we draw four spider web diagrams in terms of
each evaluation metric, i.e., HammingLoss, RankingLoss,
FMacro, and FMicro. The best performance of each algorithm
is normalized to a universal standard [0,0.5] so that the dif-
ferences between the classification performances on differ-
ent data sets do not influence the demonstration. Then, we
present the stability index according to the value after nor-
malization. The stability with different metrics is shown in
Fig. 7, where the red line denotes the stability value of the
proposed CLFS algorithm. We conclude from Fig. 7 that: (i)
For HammingLoss, FMacro, and FMicro, the shapes of CLFS
are regular hexagons, which means that CLFS obtains the

most stable solution on each metric. For RankingLoss, CLFS
is close to a regular hexagon. Nonetheless, CLFS more
comes into contact with the regular hexagon than other
algorithms. (ii) Compared with MB-MCF, the performance
and stability of CLFS are significantly improved due to the
theoretical guarantee proposed in this paper.

(4) Experiment Time: We recorded the CPU time for each
algorithm on each data set in the above experiments. Table 5
provides the average running time under the same number
of selected features with CLFS (except MB-MCF since it
could determine the selected feature size).

We conclude from Table 5 that, the CPU time of CLFS is
similar to MB-MCF but slightly higher than the traditional
multi-label feature selection methods. Note that, MB-based
feature selection methods usually have higher time complex-
ity than traditional methods since they possess interpretabil-
ity and theoretical guarantee [43]. Hence, the loss of time
efficiency is unsurprising. However, these traditional meth-
ods need to execute many times to determine the optimal
number of selected features, and the process using classifiers
to obtain the predictability of a feature subset is far more
time-consuming than the feature selection process, whereas
CLFS could predetermine the number of the selected features.
Therefore, the cost of time is reasonable coupled with many
benefits of CLFS.

5.3 Compared With SHAP-Based Methods

SHAP (SHapley Additive exPlanation) Value [44] has
become popular in the Explainable AI literature, which
could also be applied for feature selection [45]. We compare
the CLFS with the simplest general SHAP value feature
selection procedure, which consists of three steps: (1)
Choose a learning model; (2) Compute the SHAP value for
each feature; (3) Select several highest-ranking features.
Step (1) in the SHAP procedure chooses multi-label KNN
and SVM as the classifiers, and Step (3) determines the num-
ber of selected features same as CLFS. Other experimental

Fig. 7. Spider web diagrams showing the stability obtained on six multi-label data sets withHammingLoss, RankingLoss, FMacro, and FMicro of CLFS
and other state-of-the-art multi-label feature selection algorithms.

TABLE 5
Experiment Time (lgðTimeÞ) of Each Algorithm

Algorithm MIFS MCLS CSFS SFUS CMFS MB-MCF CLFS

Birds 1.924 1.646 1.409 1.546 1.763 1.795 1.857
CAL500 4.793 4.788 4.802 4.782 4.792 4.841 4.880
Emotions 0.983 1.002 0.999 0.986 1.048 0.957 1.015
EUR-Lex 4.674 4.655 4.715 4.649 4.666 4.760 4.766
Mediamill 4.318 4.334 4.296 4.342 4.329 4.375 4.442
NUS-WIDE 4.166 4.176 4.006 4.181 4.184 4.233 4.274
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settings are the same as Section 5.2. Table 6 provides the
average performance with different metrics. From Table 6,
we can conclude that the performance of CLFS is consis-
tently better than the SHAP-based methods. Furthermore,
we find that SVM+SHAP achieves better performance than
KNN+SHAP since the classifier used to evaluate the
selected features is SVM. This phenomenon indicates that
the SHAP-based method is learner-dependency while CLFS
does not need to choose an extra learner.

5.4 An Example of the Interpretability of CLFS

Inherited from CTMB, CLFS naturally possesses the capac-
ity of distinguishing the common features and label-specific
features, and thus it can explicitly interpret which labels a
feature influences. In this subsection, we further choose the
Emotions data set as an example to demonstrate the
interpretability of CLFS, because: (i) Emotions data set is
derived from psychology and some known conclusion in
the psychological study [46] can be used to validate our
experimental results; (ii) Emotions data set contains 6 labels
and 72 features, convenient to demonstrate in a figure.

These 72 features are extracted from musical context.
And the 6 labels are derived from the Tellegen-Watson-
Clark model of mood [46] as shown in Fig. 8, including
amazed-surprised (L1), happy-pleased (L2), relaxing-calm
(L3), quiet-still (L4), sad-lonely (L5), and angry-aggressive

(L6). From Fig. 8, we can discover that label pairs ðL1; L4Þ,
ðL2; L5Þ, and ðL3; L6Þ are opposite emotions, which means
that the labels in each pair should be influenced by similar
features.

The identified relationships between labels and selected
features are provided in Fig. 9, where a dyed cell indicates
that the corresponding feature has an effect on the corre-
sponding label. We can observe from Fig. 9 that common
features F21, F40, and F48 carry the information about all
labels, and F2 is a label-specific feature of label L2. From the
distribution of shaded cells, we can conclude that the labels
in label pairs ðL1; L4Þ, ðL2; L5Þ, and ðL3; L6Þ share similar
common features, which is consistent with the Tellegen-
Watson-Clark model in the previous study [46].

Note that, although CLFS selects the same features as
MB-MCF, the mined dependence relationships between
labels and features are not exactly the same, which could be
observed in the slight difference between Fig. 9 in this paper
and Fig. 4 in [35]. Therefore, there exist dependence rela-
tionships unidentified when using MB-MCF, whereas the
relationships between the feature and other labels are dis-
covered. Under these circumstances, the two algorithms
achieve similar performance.

6 CONCLUSION AND FUTURE WORK

The identification of common MB variables and target-spe-
cific MB variables is an interesting topic due to their

TABLE 6
Performance of CLFS and Comparing SHAP Methods

Metric Algorithm Birds CAL500 Emotions EUR-Lex Mediamill NUS-WIDE

HammingLoss # KNN+SHAP 0.1142 0.1825 0.2971 0.0129 0.0372 0.0334
SVM+SHAP 0.0764 0.1793 0.2389 0.0825 0.0354 0.0293

CLFS 0.0526 0.1348 0.2246 0.0093 0.0331 0.0260

RankingLoss # KNN+SHAP 0.4195 0.2241 0.2997 0.1364 0.0632 0.1297
SVM+SHAP 0.3247 0.1889 0.1846 0.0725 0.0612 0.1138

CLFS 0.2625 0.1836 0.1825 0.0498 0.0583 0.1136

FMacro " KNN+SHAP 0.0742 0.0973 0.3974 0.1123 0.0220 0.1735
SVM+SHAP 0.1258 0.1248 0.6012 0.1652 0.0285 0.1894

CLFS 0.1932 0.1592 0.6230 0.2164 0.0301 0.2160

FMicro " KNN+SHAP 0.0346 0.3520 0.5281 0.4105 0.0469 0.2765
SVM+SHAP 0.1688 0.3885 0.6105 0.4937 0.0473 0.2841

CLFS 0.2297 0.4165 0.6374 0.5051 0.5132 0.2998

Fig. 8. The graphical representation of the Tellegen-Watson-Clark
model [46], where the six labels in Emotions data set are amazed-sur-
prised, happy-pleased, relaxing-calm, quiet-still, sad-lonely, and angry-
aggressive.

Fig. 9. The Identified relationship between each selected feature and
each label in the Emotions data set. In the grid, each column corre-
sponds to a feature selected by CLFS, and each row corresponds to a
label (L1: amazed-surprised, L2: happy-pleased, L3: relaxing-calm, L4:
quiet-still, L5: sad-lonely, L6: angry-aggressive). The shaded cell indi-
cates that the corresponding feature affects the corresponding label.
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imperative role in the underlying mechanism. In this paper,
we investigate the theoretical property of common MB vari-
ables of multiple targets and find that the common MB vari-
ables are determined by equivalent information following
different mechanisms with or without the existence of direct
target dependence. Based on extensive analyses, the discov-
ery and distinguishing algorithm CTMB is proposed to
identify these two types of variables without mining all of
the multiple MBs. Furthermore, we apply CTMB to the
multi-label feature selection problem to improve the accu-
racy and interpretability. Experiments on synthetic and
real-world data demonstrate the efficacy of these proposed
methods. To our knowledge, it is the first study focusing on
the common and target-specific MB variable discovery for a
variable set.

The proposed concept of common MB variables, is fre-
quently used and considered, however, it has not been for-
mally discussed before in literature. We believe that some
research could benefit from this work, which is presented
below to prompt the possible future work.

� Common features mining. Some of the real-world
applications can use CTMB to mine the common fea-
tures of multiple labels from the data. These results
would instruct data-analysts about the underlying
knowledge and information and induce more poten-
tial solutions.

� MB-based learning tasks. Previous literature on
multi-label learning [47] has pointed that label-spe-
cific features can facilitate the prediction of its corre-
sponding label. However, these learning methods
exploit extra steps to identify these features. With
the CLFS, the predictor or classifier modeled on MB
can distinguish the common and label-specific fea-
tures before training.

� Improve computational efficiency of CTMB and
CLFS. We have previously designed an acceleration
strategy of MB discovery algorithms, called Pipeline
Machine [18]. At face value, this suggests that orga-
nizing the computations with a data structure and
modifying the algorithm with a parallel architecture
can help decrease the run time.
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